International Journal of Theoretical Physics, Vol. 43, No. 1, January 2GRD04)

Convolution of n-Dimensional Tempered
Ultradistributions and Field Theory
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In this work, a general definition of convolution between two arbitrary tempered ultradis-
tributions is given. When one of the tempered ultradistributions is rapidly decreasing this
definition coincides with the definition of J. Sebastiao e Silva. In the four-dimensional
case, when the tempered ultradistributions are even in the varkfbdeslp, we obtain

an expression for the convolution, which is more suitable for practical applications. The
product of two arbitrary even (in the variabbébandr ) four-dimensional distributions of
exponential type is defined via the convolution of its corresponding Fourier transforms.
With this definition of convolution, we treat the problem of singular products of Green
Functions in Quantum Field Theory (for Renormalizable as well as for nonrenormaliz-
able theories). Several examples of convolution of two tempered ultradistributions are
given. In particular, we calculate the convolution of two massless Wheeler’s propagators
and the convolution of two complex mass Wheeler’s propagators.

KEY WORDS: Quantum field theory; foundations; formalism; functional analytical
methods; ultradistributions.

1. INTRODUCTION

The question of the product of distributions with coincident point singular-
ities is related in Field Theory to the asymptotic behavior of loop integrals of
propagators.

From a mathematical point of view, practically all definitions lead to limi-
tations on the set of distributions that can be multiplied together to give another
distribution of the same kind.

The properties of ultradistributions (Hasumi, 1961; Sebastiao e Silva, 1958)
are well adapted for their use in Field Theory. In this respect we have shown
(Bollini et al,, 1999) that it is possible to define in one-dimensional space, the

1Departamento deiSica, Fac. de Ciencias Exactas, Universidad Nacional de La Plata, La Plata,
Argentina.

2To whom correspondence should be addressed at Departamenisici® Fac. de Ciencias Ex-
actas, Universidad Nacional de La Plata, C.C. 67 (1900) La Plata, Argentina; e-mail: rocca@
venus.fisica.unlp.edu.ar.

59

0020-7748/04/0100-0059/ 2004 Plenum Publishing Corporation



60 Bollini and Rocca

convolution of any pair of tempered ultradistributions, giving as a result another
tempered ultradistribution. The next step is to consider the convolution of any
pair of tempered ultradistribution in-dimensional space. As we shall see, this
follows from the formula obtained in Bollingt al. (1999) for one-dimensional
space.

However, the resultant formula is rather complex to be used in practical
applications and calculus. Then, for applications, it is convenient to consider the
convolution of any two tempered ultradistributions which are even in the variables
k® andp (see Section 5).

Ultradistributions also have the advantage of being representable by means
of analytic functions. So that, in general, they are easier to work with them and, as
we shall see, have interesting properties. One of those properties is that Schwartz
tempered distributions are canonical and continuously injected into tempered ul-
tradistributions and as a consequence the Rigged Hilbert Space with tempered
distributions is canonical and continuously included in the Rigged Hilbert Space
with tempered ultradistributions.

This paper is organized as follows: in Sections 2 and 3, we define the distribu-
tions of exponential type and the Fourier transformed tempered ultradistributions.
Each of them is part of a Gelfand Triplet (or Rigged Hilbert Space (Gel'fand
and Vilenkin, 1964) together with their respectives duals and a “middle term”
Hilbert space. In Section 4, we give a general expression for the convolution of
any pair ofn-dimensional tempered ultradistributions and some simple examples.
In Section 5, we obtain the expression for the convolution of any pair of even tem-
pered ultradistributions. In Section 6, we evaluate the convolution of two massless
Wheeler’s propagators. In Section 7, we evaluate the convolution of two complex
mass Wheeler’s propagators. Finally, Section 8 is reserved for a discussion of the
principal results.

2. DISTRIBUTIONS OF EXPONENTIAL TYPE

For the sake of the reader we shall present a brief description of the principal
properties of tempered ultradistributions.

2.1. Notations

The notations are almost textually taken from Hasumi (1961)R"efresp.
C") be the real (resp. compler)dimensional space whose points are denoted by
X = (X1, X2, ..., Xp) (resp.z = (2, 2o, . . ., Z,)). We shall use the notations:

O X+y=0X+VY, X2+ VYo, ..., % + Yn); aX = (aXy, aXo, ..., aXn)
(i) x>0meansx; >0,%X>0,..., %, >0
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Let N" be the set ofn-tuples of natural numbers. Ip € N", then p =
(P, P2, ..., Pn), @and p;j is a natural number, ¥ j <n. p+ q denotes p1 +
1, P2+ 02, -+, Pn+0n) @and p > g meansp; > g, P2 > G2, .- -, Pn > Gn- XP
means*x}? - - - xy". We shall denotd_~_, pj by|p|, by and byDP we denote the
differential operatol Pr+Pz+P /gx P gxS? - .. ax". For any naturak, we define
xK = xkxk ... xKandak/axk = 8”“/3x‘1‘8x2 -xK.

The spacé-t of test functions such thaPX!| D9 (x)| is bounded for any
andq is defined (Hasumi, 1961) by means of the countably set of norms:

llllp= sup e™DI(x)l, p=0,1,2,.. (2.1)
0=<g=<p.,x
According to Gel'fand and Shilov (1968} is akC{M ,} space with
Mp(x) =P DX p=12, . (2.2)

IC(elP~DIXl) satisfies conditionX) of Gelfand (Gel'fand and Vilenkin, 1964). It
is a countable Hilbert and nuclear space:

IC{ePIX} = 3 = ﬁ Hp (2.3)

whereH, is obtained by completing? with the norm induced by the scalar
product:

(@, ¥)p / (P~ DI Zchp(x)qu/f(x)dx p=1,2,... (2.4

wheredx = dx; dx...dx,
If we take the usual scalar product:

= aIx)dx (2.5)

thenH, completed with (2.5), is the Hilbert spaldeof square integrable functions.
The space of continuous linear functionals defined-bis the space\ ,, of
the distributions of the exponential type (Hasumi, 1961).
The “nested space”

B - 1H A (2.6)
is a Gelfand triplet (or a Rigged Hilbert space (Gel'fand and Vilenkin, 1964).
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In addition we haveH c SCc H ¢ 8’ C A, whereS is the Schwartz
space of rapidly decreasing test functions (Schwartz, 1966).

Any Gelfand triplei@ = (@, H, @) has the fundamental property that a lin-
ear and symmetric operator dn admitting an extension to a self-adjoint operator
in H, has a complete set of generalized eigen-functiods inith real eigenvalues.

3. TEMPERED ULTRADISTRIBUTIONS

The Fourier transform of a functiop € H is

6@ = o [ 0™ ax (3.1)

¢(2) is entire analytic and rapidly decreasing on straight lines parallel to the real
axis. We shall calh the set of all such functions.

H=F{H]} 3.2)

Itis Z{M} space (Gel'fand and Shilov, 1968), countably normed and complete,
with

Mp(@) = (1+12)° (3-3)
$ is also a nuclear space with norms:
lI@llpn = sup(l+ 2])P¢(2)| (3.4)
zeVy
where \( = {z= (21,22, ...,2,) € C":llmzj| <k, 1< j <n}

We can define the usual scalar product:

W@ = [ T o@n@dz= [ sidx  (35)
where
n@= [ " e dx

anddz=dzdz...dz

By completing$) with the norm induced by (3.5), we get the Hilbert space of
square integrable functions.

The dual off) is the spacéf of tempered ultradistributions (Hasumi, 1961). In
other words, a tempered ultradistribution is a continuous linear functional defined
on the space) of entire functions rapidly decreasing on straight lines parallel to
the real axis.

The se1m = (9, H,U) is also a Gelfand triplet.

Moreover, we hav$h c SCH C S8 cU.
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U can also be characterized in the following way (Hasumi, 1961)4lgbe
the space of all functions E(such that

() F(2) is analytic for{z € C" : |Im(zy)| > p, [IM(z2)| > p, ..., |Im(z))]
> pl.

() F(2)/z" is bounded continuous ifz € C" : |Im(z1)| > p, [Im(z2)| >
p,...,|Im(z,)| > p}, wherep =0, 1, 2,... depends on Ej.

Let IT be the set of alz-dependent pseudopolynomiatse C". Then
U is the quotient space:

ay U=A,/I

By a pseudopolynomial, we understand a function zobf the form
ZSZ?G(Zl, e Zjm1, Zj41s - Zn) With G(za, ..., Zj21, Zj41, ..., Zn) € A,

Because these properties it is possible to represent any ultradistribution as
(Hasumi, 1961)

F@) = (F@. 9(2) = yg F29¢(2)dz (3.6)

I'=T1UTILU---UT'y where the patli; runs parallel to the real axis fromoo
toocoforim(z;) > ¢, ¢ > p andbackfronvo to —oco forIim(z;) < —¢, —¢ < —p.
(T" surrounds all the singularities of ()

Formula (3.6) will be our fundamental representation for a tempered ultra-
distribution. Sometimes use will be made of “Dirac formula” for ultradistributions
(Sebastiao e Silva, 1958):

1 0 f(t)
F(z) = -
O= Gy | 6 we G
where the “density”f (t) is such that

dt (3.7)

fF(z)cp(z)dz: foo f(t) p(t) dt (3.8)
r 00

While F(z) is analytic onl", the densityf (t) is in general singular, so that the r.h.s.
of (3.8) should be interpreted in the sense of distribution theory.

Another important property of the analytic representation is the fact that on
I, F(2) is bounded by a power af(Hasumi, 1961):

IF@)| < Cjz|? (3.9)

where C andb depend on F.
The representation (3.6) implies that the addition of a pseudopolynorajal P(
to F(2) do not alter the ultradistribution:

flg{F(z) +P@}o(2dz= % F(z)¢(z)dz+7§ P@ ¢(2)dz
r r r
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But
j{ P@¢(2dz=0
r

as Pg) ¢(2) is entire analytic in some of the variablgs(and rapidly decreasing),

. yg{F(z) +P@}o(2dz= 7{ F@) ¢(2)dz (3.10)
T r

4. THE CONVOLUTION

In Bollini etal.(1999), we have defined and shown the existence of the convo-
lution product between two arbitrary one-dimensional tempered ultradistributions.
We now define:

KiF (k) k3G(kz)
H;. (k f f dkq dk? 4.1
W= b P g (4.1)
wherek — k; — ko = IT{_; (ki — ki — koi). Let b; be a vertical band contained in

the A;-planep;. Integral (4.1) is an analytic function afdefined in a domai®
given by the cartesian product of vertical baridb; contained in the cartesian
product® = Ip, of then A-planes. Moreover, it is bounded by a powerlof
Then, according to the method of Gel'fand and Shilov (1964),ciin be ana-
lytically continued to other parts &. In particular, near the origin we have the
Laurent expansion:

Hi(K) = >~ HO(k)a" (4.2)

We now define the convolution product as thindependent term of (4.2):
H(k) = HO(K) (4.3)

The proof that KP)(k) is a tempered ultradistribution is similar to the one given
in Bollini et al. (1999) for the one-dimensional case. For an immediate appli-
cation of (4.1)-(4.3), we can evaluate the product of two arbitrary derivatives
of an-dimensionals distribution. By calculating the convolution product of the
Fourier transforms of(™(x) ands(™(x), and then antitransforming, we can show
that:

8M(x) - 8M(x) =0 (4.4)

extending the result obtained in Bolliet al. (1999) for the one-dimensional case.
Likewise, we can obtain

(02 o) - (g ) = () (@)

generalizing again the result of Bolliat al. (1999).
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As another example, let us consider the product{y—™) . (x "2y~™2)
We have

—N1,\,—M —N2\,—M2\\ __ (_i)n1+nz ni+n,—1 i Zi)\l I
FIOcmy ™) (xey ) = g LA D)

(nl +ny — l)l 1 4 \q
T (_I )ml+m2 my+my—1 I Zg}\z I T
+ ESQHU(Zl)]}mZQ 30, +3 In(z) + ESQnU(Zz)]

(_| )n1+n2

N mZQHHH [ﬁ[l + 22 In(z0)] + '5 In(zy) + %Sgnp(zl)]]

_CO™_memeal Ly o5 inza)] + - Inzs) + X Sgnpiza)
S—T > 0 2 2 > 2 5 g 2
(4.6)

The (.1; A2)-independent term is

—_j)utn
Mz?““ [i In(z) - %Sgnp(zl)l}

i
(—i)mutme

m;+mp—1 1 T
(e [; In(z2) — ESgnU(Zz)]] 4.7)

and it is recognized to h&{x M "zy~M—M2}

5. THE CONVOLUTION OF EVEN FOUR-DIMENSIONAL
TEMPERED ULTRADISTRIBUTIONS

We pass now to consider the convolution of two even tempered ultradistribu-
tions.

The Fourier transform of a distribution of exponential type, even in the vari-
ablesx? and|X| is by definition a even tempered ultradistribution in the variables
kO andp = (k? + K3 + - - - + k?)Y/2. Taking into account the equality

+00

+oo R
/ f(x) p(x) dx = f F(k)¢(k)dk=/ f(K) p(k) dk (5.1)
—00 r —00

(where Fk) and f (k) are related by (3.7)), we conclude thigk) is even ink®

andp.

For most practical applications, one has to deal with the convolution of two
Lorentz invariant ultradistributions. They are particular cases of ultradistributions
which are even in two relevant variables: one temporal and the other the spacial
distance (the even ultradistributions).
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Let as now considdre H even. Then we can write:

n i +00 oo

f(XO'”:(anW/_wf fko, P)E e pdodld (5.2)
27'[i +oo ~ ikOxO0 ipr 0

f (ko p) = —7/ f(x0, 1)€< P r dr dx (5.3)

Let as now také € H. Then according to (5.2),
2 ~ 1 +oo i (1O OO
00809 =~ ooyara | [[[ 1K )0, p) e (52D
x p1p2dp1 dp K dKS (5.4)
and Fourier transforming (5.4)
N . i +00 (101010
FH0I 8090 = s /_ e f £ (€, 1) g2, pa) & (-

x g=r=r2 o 5o dpy dpzdk?dkgl’_ldl’ dx® (5.5)

Evaluating the integral in the variabk® and callingh(k®, p) = F{ f (x) §(x)} (k)
in (5.5), we obtain

+00
6y =i [ [ 101 9l p)5(0€ -~ )

x p1p2dp1 dpo A2 dKdr ~Ldr (5.6)

g (p—p1—p2)r

We want now to extend kf, p) to the complex plane as a tempered ultradis-
tribution. For this we can use for example, formula (3.7). First we consider the
term

g (p—p1—p2)r
S — (5.7)
P
The extension to the complex plane is
g (p—pr1—p2)r
{O(r) ©[I(p)] — O(-T) 8[—3(0)]}T (5.8)
where® is the Heaviside’s step function afidlenotes “Imaginary part.”
On the other hand the extension of
3(K% — k9 — k) (5.9)
is
1
(5.10)

2w (K0 — K9 — K))
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Replacing [(5.8), (5.10)] in (5.6) and then integrating out the variejolee obtain

+00 kO, ,
HIC, ) = 5 / f / f 1 "1 22”2){0[3@)] In(p1 + 2 — )

O[-3(p)] x In(p — p1 — p2)}prp2dpr dp2 AR Ak (5.11)

where HK?, p) is the extension of (k%, p). Taking into account that (k%, p1) and
g(k?, p2) are even functions in the first and second variables, (5.11) takes the form

HK, ) = /+°°/// kg"’l 2”)2) In[o? — (o1 + p2)?

x p1p2 dpy dpz dK Ak (5.12)

The expression (5.12) for K}, p) can be rewritten in the form

ko,p k°,p
M0 = o f § o PO ) yye 4y
TP Jr9 Jry Jry Jr, 2

x p1p2 dpy dpp Ak dK) (5.13)

where FK?, p1) and Gk, p2) are respectively, the extensions b(k?, p;) and
g(k9, p2) and where we have takedi{k®)| > [J(k9)| + |3(k)1, [3(0)| > 1I(pa)| +
|3(02)|. Inadditionr"$, T'9, 'y, andI", are respectively, paths (as we have described
in Section 3), in the variablde), k3, p; and p, enclosing all the singularities of
the integrand in (5.13). The difference between

2p 2 2
————dp and Injp* — (o1 +
/ PRy P " — (o1 + p2)°]

is an entire analytic function. With this substitution in (5.13), we obtain

F(k, p1) G(KD, p2) 1
0= o [rand § 4§ et
(o) = pap o Jre Jry Jr, ko ko p? — (p1+ p2)?

x p1p2 dpy dpz IO dIQ (5.14)

Now we can use the method of Bolliet al. (1999) to define the convolution
for the case in which K, p1) and GK?, p2) are tempered ultradistributions.
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We define:

y (k kO?»o A+1F ko l)kg)‘opéﬂ G(kg, pz)
Aor Io) 0_ 0
roJrg Jr, Jr, —ki —k5

dp1 dpo dK0 dK2 (5.15)

p—m+m2

Integral (5.15) is an analytic function ofq, ») bounded by a power gk| and
defined in a domai¥ given by the cartesian product of a vertical bégdontained

in the Ao-plane and vertical bankl contained in thé.-plane. We can again extend
this domain using the method given in Gel'fand and Shilov (1964) and perform
the Laurent expansion:

Hion (0 p) = Y H™O(C, p)aga” (5.16)

mn

We define the convolution product as thg,(1)-independent term of (5.16).
H(K) = H(K®, p) = HOOUKS, p) (5.17)

The proof that HK) is an ultradistribution is similar to the one given in Bollini
et al. (1999) for the one-dimensional case.
To simplify the evaluation of (5.15) we define:

koxop,wl E kO ) kg*(’pé”lG (kg, pz)
Ly (K, 0) = 9 K8
Fl FO r, Jr; kl B k2

dp1 dpp dk® dK2 (5.18)

p—m+m2
so that

1
Hio () = 5 [ Lt oo (5.19)

Now we go to show that the cut on the real axis of (5.17) k", p) is a even
function ofk® and . For this purpose we consider

’ (ko p) ‘¢\ f % % kO)»o A+1F kO )kg)uopén-ﬁ-lG(kg, ,OZ)
Por AT 47T,0 r9 Jr9Jry Jr, k&’—kS

x In[p? — (p1 + p2)°] dp1 dpzdk?dkg (5.20)

(5.20) is explicitly odd inp. For the variablek®, we take on account that
gmro(Sand(1+san0AN — 1 and as a consequence (5.20) is od&irtoo. We
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consider now the parity in variabje

+00
f f Hy (K%, — ) (KO, ) dKOdp = — / / M (€%, — )6 (K, 0) K dp
Fo r —0o0

+00
— ‘¢l:o f‘ H)»o)»(ko, 10) ¢)(k0, p)dkodp = —/700/ h)ho)\(ko, ,0) ¢(k0, p)dkodp

(5.21)
Thus we have
hxox(ko, —p) = hxox(koy ) (5.22)
The proof for the variabl&® is similar.
6. THE CONVOLUTION OF TWO MASSLESS
WHEELER’'S PROPAGATORS
The massless Wheeler’s propagatgris given by
i
Wo(K) = —5—— (6.1)
k5 — p?

It can be extended to the complex plane as a tempered ultradistribution in the
variablesk® andp:

Wo(K) =

_;S9m(k%) [Sgrﬁ(p) Sgro(k®)  Sgrii(p) + Sgri(k%)

8ko o — KO p + KO ] (6.2

where Sgrx) is the function sign of the variable
We can now evaluate the convolution of two massless Wheeler’s propagators.
Then according to (5.18) and (6.2) we can write:

Sgrii(k?)
Lot == ¢ ¢ §
wor(K5, p) = ro Jro Jr, Jr, 8k°

Sgrﬂ(m) Sgi(k})  Sgri(ps) + Sgri(k?)
k0 p1+ k?

5 Sgrﬁ(kg) Sgrii(p2) — Sgri(k3) _ Sgri(e2) + Sgrii(k9)
8k(2) P2 — kg P2+ kg

Oro A+1p,000 A+1
Ki 01" Ky p)

=K =Ko — (o1 + 2]

do1 doz di dK3 (6.3)
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Equation (6.3) can be written as

toor (Sgro(k)) [ 1 1
waten=-4 4 [ 15 en - anl
A r9Jre J oo 801 K —p1 K+p

1 1 1
i0 A+1 i0 A+1 |: i|
X [(/01 + ) + (Pl ) ] + 8k0 ko + o1 kg —m

0
><[(pl+ao>*+1—(pl—iowl]}{sgm(kZ)[ -]
kz—/)z

1 1 1
'O)»+1 O)‘J"l |: :|
X[z H10Y 4 (o2 =10V 1+ go | o, T i0—
ky'°ka" dpy dpp dK dk2
[(p2 ) (o2 Yl (ko_kg_kg)[pZ—(p1+,02)2]
(6.4)

Integrating (6.4) in the variablef, we obtain

+o0 in 0[ 1 B 1 ]
s =4, [ [ {500 e - w—pern

x [(p1 + 10t + (p1 — 0y

+In|: 2 1 1 :|
4p1 K —KO  K)—(KO—p1)  KI— (KO~ pq)

: : Sg(k)) [ 1 1
_HO/\H_ _|0A+1}{ 2 [ _ ]
X [(:01 ) (101 ) ] 8[)2 kg P kg T 02

1 1 1
i0 A+1 i0 A1 [ i|
X [(:02 + ) + (102 ) ] + 8k0 ko P kg — o2

dp1 do2 dkd

p? — (p1+ p2)? (6:5)

< (02 +10) — (pp— iowl]}

where we have selected), = 0 due to the fact the integral is convergent for
A0 =0.
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There have a sole term in (6.5) whose integral is not null. It is

. +oo in o[ 1 B 1 ]
=4 [ [ s oo g we

0
X[(p1+i0)k+1+(pl_i0)x+1]+Sgrﬁ(kz)[ 11 }

802 Lk§—p2 K3+ p2
% [(p2 + 10 + (pp — 10)+1] % (6.6)
Evaluation of (6.6) gives
Zko +00
L0 =55 [ [0y s o 105
x [(p2 +10y*1 + (02 — 10y
x dpa dpz (6.7)

(K + 0% — p3)* — AKk3p2] (02 — (o1 + p2)?]

We can evaluate now the integral in the varigbjén (6.7). The result is
0 73 (14 coswk)2
Lk p) = 160 sin (“1) dpl i
e—%(x+1)59n7(k0)(ko + pl)A+1 _e% (A+1)SgnJ(p)(p + p1 )x+1
(0 =K (25 + o)

e-%(x+1)59rﬂ(k°)(ko + o)t — e%[()\-&-l)Sgﬂ(p)( p1 — p)+t

(0 +K9) (25 = 1)
e%’(x+1)89rﬁ(k°)(p — KO —‘l(A+1)Sgn"J(p)(p1 4 p)tt

(0 +K9) (25 + 1)

e%(k-kl)SgrfJ(ko)( o1 — kO)Hl _e% (x+1)Sgrﬁ(p)( o1 — p)A+1

i (0= k) (25 — o)

(6.8)
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The evaluation of (6.8) is a tedious task. Fortunatelylim 0 can be taken
without problem in the finals steps of the calculation. The result is

7T3 T T
L(K®, p) = P [Engﬁ(kO) Sgro(k° + p) + 5 59(p) Sgro(k° + )

+ 7 (k) Sgri(o — k) — Sgro(o — kO)} 6.9)
Equation (6.9) can be written:

4
L(K®, p) = g—p[(SQfﬁ(kO) +Sgri(p)) Sgri(o + k°) + (Sgri(k’) — Sgrii(p))

4
x SgIi(p — k%] = Z—pSgrﬁ(ko) Sgrii(p) (6.10)
Taking into account that
1
HOC, ) = 5 / L(C, p)p dp
70
we obtain
3
T
H(K®, p) = 75 SrO(K) Sgrd(p) = [Wo x Wl(K’, o) (6.11)

(The symbolk indicates the convolution product).
Thus the cut of HKC, p) along the real axis, i.e., the distributiorkf( p) is

713
h(k®, p) = - = [Wox wol(K°, p) (6.12)

7. THE CONVOLUTION OF TWO COMPLEX
MASS WHEELER'S PROPAGATORS

The complex mass Wheeler’s propagator is

im p/2t 1/2(1-n/2) 1/2
Sl T @) )

and it Fourier transform has the expression:
isgnp(k0)] | Sanb(o)] — Sgr{3(/k§ — 1?)]

: Sm { p— \/H

~ SgnD(e)] + Sar{3(/k§ — ,ﬂ)]}

p+ kg — u?

Wy, (X) =

Wu(kou p) =

(7.2)
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Using (7.2), we have now

L€, p) = 7{ ?g f 7{ Sg{3(k9)] | SanB(p2)] — Sgr{3(/k? — )]
P r{JrgJriJre g /k02 kgz_ ,U«%
_ Sgnb(eu)] + Sgr{3 (ke — )]
p+ 1+ k3 — 1l
sg{3(k9)] | SInB(p2)] — Sgr{I(/kS? — 13)]
X
8,/kY? — 15
__Sgnpo»n4—89¢ﬁgﬂ€2—-u@]}
p2+ kP — u3

y p1p2 dp1 dpo A K
(KO — K — K3)[ 02 — (o1 + p2)?]

P1L—

p2 — /K — 3

(7.3)

where we have selectéd = A = 0 due to that (7.3) is convergent in this point
(observe the reader that it is due to the definition &©Lp)). Now (7.3) is equal

to
toor SgnI(k?)]  SgrI(k3
L(kO ,0) __% % / / r[ 02 r[ 2( 2)]02
o Jrg pF + ud — kY p5 + us — k3

% P12
(K — kY = K3)[0? — (o1 + p2)?]

dp1dpo dY dK  (7.4)

and can be rewritten as

+oo rSgr{T(k9) ]
w54 417 dﬁ{ ﬁ H
Sgn[J(ko)] 1
P2 dpydp dKOdIQ (7.5)

p? — (p1+ p2)?
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Taking into account that

f% Sgr{3(k9)]sgr{3(k3)] 1 B 1
SR = Jof+ut Ko +ud

1 1
X - dkf dkd
[kg—\/pﬁﬂb% k8+\/p22+u5}

320%K0 /02 + 13 03 + 13

=— (7.6)
[k3+ (03 + 13) — (03 + 12" — 4G (3 + 1)
Replacing this result in (7.5) we obtain
1
L.y =2 [ f )
—ood [K§ + (05 + 13) — (% + 13)]” — 4Kk5 (03 + 13)
P102
—————dp,d 7.7
02— (it H? (7.7)
Taking into account that
pdo PN ~
————— = O[3()] (o1 + p2 = p) + O[=I(P)]IN(p — p1 — p2)
p?—(p1+ p2) 7.8)

and using the result (7.7) we obtain

7Tko +

HOE, p) = T -

'/ [K§ + (03 + u3) — (of +M2)] — 4k5(0% + 13)

x O[I(p)]In(p1 + p2 — p) + O[=T(p)]IN(p — p1 — p2) dp1 dp2
(7.9)

Equation (7.9) can be written in the realaxis as

ir2k0 /+°°/ Sgnfo1 + p2 — p)p1p2dp1dp2
K3+ (0% + 13) — (02 + nd)]" — 4(03 + I(L7§)10

H(ko, p) =

After the evaluation of double integral of (7.10) we obtain

3Sgl’l[ff(ko)] \/

HK®, p) = — P24 ud - 12)? — 4K — p?)ui

= [W,L1 * WM](k . 0) (7.11)
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8. DISCUSSION

In an earlier paper (Bollingt al., 1999), we have shown the existence of the
convolution of two one-dimensional tempered ultradistributions. In this paper we
have extended these proceduretdimensional space. In four-dimensional space
we have obtained a expression for the convolution of two tempered ultradistribu-
tions even in the variabld€ andp.

When we use the perturbative developmentin Quantum Field Theory, we have
to deal with products of distributions in configuration space, or else, with convolu-
tions in the Fourier transformeglspace. Unfortunately, products or convolutions
(of distributions) are in general ill-defined quantities. However, in physical ap-
plications one introduces some “regularization” scheme, which allows us to give
sense to divergent integrals. Among these procedures we would like to mention
the dimensional regularization method (Bollini and Giambiagi, 1972a,b, 1996).
Essentially, the method consists in the separation of the volume elenighir(i
an angular factor @) and a radial factor (* dp). First, the angular integration
is carried out and then the number of dimensions v is taken as a free parameter.
It can be adjusted to give a convergent integral, which is an analytic function
of v.

Our formula (4.1) is similar to the expression one obtains with dimensional
regularization. However, the parameterare completely independent of any di-
mensional interpretation.

All ultradistributions provide integrands (in (4.1)) that are analytic functions
along the integration paths. The parametersermit us to control the possible
tempered asymptotic behavior (cf. Eq. (3.9)). The existence of a region of ana-
Iyticity for eachi, and a subsequent continuation to the point of interest (Bollini
et al, 1999), defines the convolution product.

For tempered ultradistributions (even in the variatk€sand p), we have
obtained formula (5.15) for which are valid similar considerations to those given
for (4.1). The properties described below show that tempered ultra-distributions
provide an appropriate framework for applications to physics. Furthermore, they
can “absorb” arbitrary pseudopolynomials, thanks to Eq. (3.10). A property that
is interesting for renormalization theory. For this reason we decided to begin this
paper and also for the benefit of the reader we began this paper with a summary
of the main characteristics ofdimensional tempered ultradistributions and their
Fourier transformed distributions of the exponential type.
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