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In this work, a general definition of convolution between two arbitrary tempered ultradis-
tributions is given. When one of the tempered ultradistributions is rapidly decreasing this
definition coincides with the definition of J. Sebastiao e Silva. In the four-dimensional
case, when the tempered ultradistributions are even in the variablesk0 andρ, we obtain
an expression for the convolution, which is more suitable for practical applications. The
product of two arbitrary even (in the variablesx0 andr ) four-dimensional distributions of
exponential type is defined via the convolution of its corresponding Fourier transforms.
With this definition of convolution, we treat the problem of singular products of Green
Functions in Quantum Field Theory (for Renormalizable as well as for nonrenormaliz-
able theories). Several examples of convolution of two tempered ultradistributions are
given. In particular, we calculate the convolution of two massless Wheeler’s propagators
and the convolution of two complex mass Wheeler’s propagators.

KEY WORDS: Quantum field theory; foundations; formalism; functional analytical
methods; ultradistributions.

1. INTRODUCTION

The question of the product of distributions with coincident point singular-
ities is related in Field Theory to the asymptotic behavior of loop integrals of
propagators.

From a mathematical point of view, practically all definitions lead to limi-
tations on the set of distributions that can be multiplied together to give another
distribution of the same kind.

The properties of ultradistributions (Hasumi, 1961; Sebastiao e Silva, 1958)
are well adapted for their use in Field Theory. In this respect we have shown
(Bollini et al., 1999) that it is possible to define in one-dimensional space, the
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convolution of any pair of tempered ultradistributions, giving as a result another
tempered ultradistribution. The next step is to consider the convolution of any
pair of tempered ultradistribution inn-dimensional space. As we shall see, this
follows from the formula obtained in Bolliniet al. (1999) for one-dimensional
space.

However, the resultant formula is rather complex to be used in practical
applications and calculus. Then, for applications, it is convenient to consider the
convolution of any two tempered ultradistributions which are even in the variables
k0 andρ (see Section 5).

Ultradistributions also have the advantage of being representable by means
of analytic functions. So that, in general, they are easier to work with them and, as
we shall see, have interesting properties. One of those properties is that Schwartz
tempered distributions are canonical and continuously injected into tempered ul-
tradistributions and as a consequence the Rigged Hilbert Space with tempered
distributions is canonical and continuously included in the Rigged Hilbert Space
with tempered ultradistributions.

This paper is organized as follows: in Sections 2 and 3, we define the distribu-
tions of exponential type and the Fourier transformed tempered ultradistributions.
Each of them is part of a Gelfand Triplet (or Rigged Hilbert Space (Gel’fand
and Vilenkin, 1964) together with their respectives duals and a “middle term”
Hilbert space. In Section 4, we give a general expression for the convolution of
any pair ofn-dimensional tempered ultradistributions and some simple examples.
In Section 5, we obtain the expression for the convolution of any pair of even tem-
pered ultradistributions. In Section 6, we evaluate the convolution of two massless
Wheeler’s propagators. In Section 7, we evaluate the convolution of two complex
mass Wheeler’s propagators. Finally, Section 8 is reserved for a discussion of the
principal results.

2. DISTRIBUTIONS OF EXPONENTIAL TYPE

For the sake of the reader we shall present a brief description of the principal
properties of tempered ultradistributions.

2.1. Notations

The notations are almost textually taken from Hasumi (1961). LetRn (resp.
Cn) be the real (resp. complex)n-dimensional space whose points are denoted by
x = (x1, x2, . . . , xn) (resp.z= (z1, z2, . . . , zn)). We shall use the notations:

(i) x + y = (x1+ y1, x2+ y2, . . . , xn + yn); αx = (αx1, αx2, . . . , αxn)
(ii) x ≥ 0 meansx1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0
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(iii) x · y =
r i∑

j=1
xj yj

(iv) | x| =
n∑

j=1
| xj |

Let Nn be the set ofn-tuples of natural numbers. Ifp ∈ Nn, then p =
(p1, p2, . . . , pn), and pj is a natural number, 1≤ j ≤ n. p+ q denotes (p1+
q1, p2+ q2, . . . , pn + qn) and p ≥ q meansp1 ≥ q1, p2 ≥ q2, . . . , pn ≥ qn. xp

meansxp1
1 xp2

2 · · · xpn
n . We shall denote

∑n
j=1 pj by |p|, by and byD p we denote the

differential operator∂ p1+p2+···pn/∂xp1
1 ∂xp2

2 · · · ∂xpn
n . For any naturalk, we define

xk = xk
1xk

2 · · · xk
n and∂k/∂xk = ∂nk/∂xk

1∂xk
2 · · · ∂xk

n.
The spaceH of test functions such thatep|x||Dqφ(x)| is bounded for anyp

andq is defined (Hasumi, 1961) by means of the countably set of norms:

||φ̂||p = sup
0≤q≤p,x

ep|x||Dqφ̂(x)|, p = 0, 1, 2,. . . (2.1)

According to Gel’fand and Shilov (1968),H is aK{Mp} space with

Mp(x) = e(p−1)|x|, p = 1, 2,. . . (2.2)

K{e(p−1)|x|} satisfies condition (N ) of Gelfand (Gel’fand and Vilenkin, 1964). It
is a countable Hilbert and nuclear space:

K
{
e(p−1)|x|} =H = ∞⋂

p=1

Hp (2.3)

whereHp is obtained by completingH with the norm induced by the scalar
product:

〈φ̂, ψ̂〉p =
∫ ∞
−∞

e2(p−1)|x|
p∑

q=0

Dq ¯̂φ(x)Dqψ̂(x) dx; p = 1, 2,. . . (2.4)

wheredx = dx1 dx2 . . .dxn

If we take the usual scalar product:

〈φ̂, ψ̂〉 =
∫ ∞
−∞

¯̂φ(x)ψ̂(x) dx (2.5)

thenH, completed with (2.5), is the Hilbert spaceH of square integrable functions.
The space of continuous linear functionals defined onH is the spaceΛ∞ of

the distributions of the exponential type (Hasumi, 1961).
The “nested space”

= (H, H, Λ∞) (2.6)

is a Gelfand triplet (or a Rigged Hilbert space (Gel’fand and Vilenkin, 1964).
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In addition we have,H ⊂ S ⊂ H ⊂ S ′ ⊂ Λ∞, whereS is the Schwartz
space of rapidly decreasing test functions (Schwartz, 1966).

Any Gelfand triplet = (Φ, H,8′) has the fundamental property that a lin-
ear and symmetric operator onΦ, admitting an extension to a self-adjoint operator
in H, has a complete set of generalized eigen-functions inΦ′ with real eigenvalues.

3. TEMPERED ULTRADISTRIBUTIONS

The Fourier transform of a function̂φ ∈H is

φ(z) = 1

2π

∫ ∞
−∞

¯̂φ(x) eiz·x dx (3.1)

φ(z) is entire analytic and rapidly decreasing on straight lines parallel to the real
axis. We shall callH the set of all such functions.

H = F{H} (3.2)

It isZ{Mp} space (Gel’fand and Shilov, 1968), countably normed and complete,
with

Mp(z) = (1+ |z|)p (3.3)

H is also a nuclear space with norms:

||φ||pn = sup
z∈Vn

(1+ |z|)p|φ(z)| (3.4)

where Vk = {z= (z1, z2, . . . , zn) ∈ Cn:|Imzj | ≤ k, 1≤ j ≤ n}
We can define the usual scalar product:

〈φ(z), ψ(z)〉 =
∫ ∞
−∞

φ(z)ψ1(z) dz=
∫ ∞
−∞

¯̂φ(x)ψ̂(x) dx (3.5)

where

ψ1(z) =
∫ ∞
−∞

ψ̂(x)e−i z·x dx

anddz= dz1 dz2 . . .dzn

By completingH with the norm induced by (3.5), we get the Hilbert space of
square integrable functions.

The dual ofH is the spaceU of tempered ultradistributions (Hasumi, 1961). In
other words, a tempered ultradistribution is a continuous linear functional defined
on the spaceH of entire functions rapidly decreasing on straight lines parallel to
the real axis.

The set = (H, H, U ) is also a Gelfand triplet.
Moreover, we haveH ⊂ S ⊂ H ⊂ S′ ⊂ U.
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U can also be characterized in the following way (Hasumi, 1961): letAω be
the space of all functions F(z) such that

(I) F(z) is analytic for{z ∈ Cn : |Im(z1)| > p, |Im(z2)| > p, . . . , |Im(zn)|
> p}.

(II) F(z)/zp is bounded continuous in{z ∈ Cn : |Im(z1)| ≥ p, |Im(z2)| ≥
p, . . . , |Im(zn)| ≥ p}, wherep = 0, 1, 2,. . . depends on F(z).
Let Π be the set of allz-dependent pseudopolynomials,z ∈ Cn. Then
U is the quotient space:

(III) U = Aω/Π

By a pseudopolynomial, we understand a function ofz of the form∑
s zs

j G(z1, . . . , zj−1, zj+1, . . . , zn) with G(z1, . . . , zj−1, zj+1, . . . , zn) ∈ Aω

Because these properties it is possible to represent any ultradistribution as
(Hasumi, 1961)

F(φ) = 〈F(z), φ(z)〉 =
∮
0

F(z)φ(z) dz (3.6)

0 = 01 ∪ 02 ∪ · · · ∪ 0n where the path0 j runs parallel to the real axis from−∞
to∞ for Im(zj ) > ζ, ζ > p and back from∞ to−∞ for Im(zj ) < −ζ,−ζ < −p.
(0 surrounds all the singularities of F(z).)

Formula (3.6) will be our fundamental representation for a tempered ultra-
distribution. Sometimes use will be made of “Dirac formula” for ultradistributions
(Sebastiao e Silva, 1958):

F(z) = 1

(2π i )n

∫ ∞
−∞

f (t)

(t1− z1)(t2− z2) · · · (tn − zn)
dt (3.7)

where the “density”f (t) is such that∮
0

F(z)φ(z) dz=
∫ ∞
−∞

f (t)φ(t) dt (3.8)

While F(z) is analytic on0, the densityf (t) is in general singular, so that the r.h.s.
of (3.8) should be interpreted in the sense of distribution theory.

Another important property of the analytic representation is the fact that on
0, F(z) is bounded by a power ofz (Hasumi, 1961):

|F(z)| ≤ C|z|p (3.9)

where C andp depend on F.
The representation (3.6) implies that the addition of a pseudopolynomial P(z)

to F(z) do not alter the ultradistribution:∮
0

{F(z)+ P(z)}φ(z) dz=
∮
0

F(z)φ(z) dz+
∮
0

P(z)φ(z) dz
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But ∮
0

P(z)φ(z) dz= 0

as P(z)φ(z) is entire analytic in some of the variableszj (and rapidly decreasing),

·. .
∮
0

{F(z)+ P(z)}φ(z) dz=
∮
0

F(z)φ(z) dz (3.10)

4. THE CONVOLUTION

In Bollini et al.(1999), we have defined and shown the existence of the convo-
lution product between two arbitrary one-dimensional tempered ultradistributions.
We now define:

Hλ(k) = i

(2π )n

∮
01

∮
02

kλ1F(k1) kλ2G(k2)

k− k1− k2
dk1 dk2 (4.1)

wherek− k1− k2 = 5n
i=1(ki − k1i − k2i ). Let bbi be a vertical band contained in

theλi -planeppi . Integral (4.1) is an analytic function ofλ defined in a domain
given by the cartesian product of vertical bands5bbi contained in the cartesian
product = 5ppi of the n λ-planes. Moreover, it is bounded by a power of|k|.
Then, according to the method of Gel’fand and Shilov (1964), Hλ can be ana-
lytically continued to other parts of . In particular, near the origin we have the
Laurent expansion:

Hλ(k) =
∑

n

H(n)(k)λn (4.2)

We now define the convolution product as theλ-independent term of (4.2):

H(k) = H(0)(k) (4.3)

The proof that H(0)(k) is a tempered ultradistribution is similar to the one given
in Bollini et al. (1999) for the one-dimensional case. For an immediate appli-
cation of (4.1)–(4.3), we can evaluate the product of two arbitrary derivatives
of a n-dimensionalδ distribution. By calculating the convolution product of the
Fourier transforms ofδ(m)(x) andδ(n)(x), and then antitransforming, we can show
that:

δ(m)(x) · δ(n)(x) = 0 (4.4)

extending the result obtained in Bolliniet al.(1999) for the one-dimensional case.
Likewise, we can obtain(

xα1
1+ xα2

2+ · · · xαn
n+
) · (xβ1

1+ xβ2
2+ · · · xβn

n+
) = (xα1+β1

1+ xα2+β2
2+ · · · xαn+βn

n+
)

(4.5)

generalizing again the result of Bolliniet al. (1999).
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As another example, let us consider the product (x−n1 y−m1) · (x−n2 y−m2)
We have

F{(x−n1 y−m1) · (x−n2 y−m2)} = (−i )n1+n2

(n1+ n2− 1)!
zn1+n2−1

1

[
i

4

z2λ1
1

λ1
+ i

2
ln(z1)

+ π
2

Sgn[I(z1)]

]
(−i )m1+m2

(m1+m2− 1)!
zm1+m2−1

2

[
i

4

z2λ2
2

λ2
+ i

2
ln(z2)+ π

2
Sgn[I(z2)]

]

= (−i )n1+n2

(n1+ n2− 1)!
zn1+n2−1

1

[
i

4λ1
[1+ 2λ1 ln(z1)] + i

2
ln(z1)+ π

2
Sgn[I(z1)]

]
× (−i )m1+m2

(m1+m2− 1)!
zm1+m2−1

2

[
i

4λ
[1+ 2λ2 ln(z2)] + i

2
ln(z2)+ π

2
Sgn[I(z2)]

]
(4.6)

The (λ1; λ2)-independent term is

(−i )n1+n2π

(n1+ n2− 1)!
zn1+n2−1

1

[
1

π i
ln(z1)− π

2
Sgn[I(z1)]

]
× (−i )m1+m2

(m1+m2− 1)!
zm1+m2−1

2

[
1

π i
ln(z2)− π

2
Sgn[I(z2)]

]
(4.7)

and it is recognized to beF{x−n1−n2 y−m1−m2}

5. THE CONVOLUTION OF EVEN FOUR-DIMENSIONAL
TEMPERED ULTRADISTRIBUTIONS

We pass now to consider the convolution of two even tempered ultradistribu-
tions.

The Fourier transform of a distribution of exponential type, even in the vari-
ablesx0 and|Ex| is by definition a even tempered ultradistribution in the variables
k0 andρ = (k2

1 + k2
2 + · · · + k2

n)1/2. Taking into account the equality∫ +∞
−∞

f̂(x) φ̂(x) dx =
∮
0

F(k)φ(k) dk=
∫ +∞
−∞

f (k)φ(k) dk (5.1)

(where F(k) and f (k) are related by (3.7)), we conclude thatf (k) is even ink0

andρ.
For most practical applications, one has to deal with the convolution of two

Lorentz invariant ultradistributions. They are particular cases of ultradistributions
which are even in two relevant variables: one temporal and the other the spacial
distance (the even ultradistributions).
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Let as now consider̂f ∈ H even. Then we can write:

f̂(x0, r ) = i

(2π )3r

∫ +∞
−∞

∫
f (k0, ρ)e−ik0x0

e−i prρ dρ dk0 (5.2)

f (k0, ρ) = −2π i

ρ

∫ +∞
−∞

∫
f̂(x0, r )eik0x0

eipr r dr dx0 (5.3)

Let as now takêg ∈ H. Then according to (5.2),

f̂(x) ĝ(x) = − 1

(2π )6r 2

∫ +∞
−∞

∫∫∫
f
(
k0

1, ρ1
)
g
(
k0

2, ρ2
)

e−i (k0
1+k0

2)x0
e−i (ρ1+ρ2)r

× ρ1ρ2 dρ1 dρ2 dk0
1 dk0

2 (5.4)

and Fourier transforming (5.4)

F{f̂(x) ĝ(x)}(k) = i

(2π )5ρ

∫ +∞
−∞
· · ·
∫

f
(
k0

1, ρ1
)

g
(
k0

2, ρ2
)

ei (k0−k0
1−k0

2)x0

× ei (ρ−ρ1−ρ2)rρ1ρ2 dρ1 dρ2 dk0
1 dk0

2 r−1 dr dx0 (5.5)

Evaluating the integral in the variablex0 and callingh(k0, ρ) = F{ f̂ (x) ĝ(x)}(k)
in (5.5), we obtain

h(k0, ρ) = i
∫ +∞
−∞
· · ·
∫

f
(
k0

1, ρ1
)

g
(
k0

2, ρ2
)
δ
(
k0− k0

1 − k0
2

) ei (ρ−ρ1−ρ2)r

ρ

× ρ1ρ2 dρ1 dρ2 dk0
1 dk0

2 r−1 dr (5.6)

We want now to extend h(k0, ρ) to the complex plane as a tempered ultradis-
tribution. For this we can use for example, formula (3.7). First we consider the
term

ei (ρ−ρ1−ρ2)r

ρ
(5.7)

The extension to the complex plane is

{2(r )2[I(ρ)] −2(−r )2[−I(ρ)]}e
i (ρ−ρ1−ρ2)r

ρ
(5.8)

where2 is the Heaviside’s step function andI denotes “Imaginary part.”
On the other hand the extension of

δ
(
k0− k0

1 − k0
2

)
(5.9)

is

− 1

2π i
(
k0− k0

1 − k0
2

) (5.10)
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Replacing [(5.8), (5.10)] in (5.6) and then integrating out the variabler , we obtain

H(k0, ρ) = 1

2πρ

∫ +∞
−∞

∫∫∫
f
(
k0

1, ρ1
)

g
(
k0

2, ρ2
)

k0− k0
1 − k0

2

{2[I(ρ)] ln(ρ1+ ρ2− ρ)

+2[−I(ρ)] × ln(ρ − ρ1− ρ2)}ρ1ρ2 dρ1 dρ2 dk0
1 dk0

2 (5.11)

where H(k0, ρ) is the extension off (k0, ρ). Taking into account thatf (k0
1, ρ1) and

g(k0
2, ρ2) are even functions in the first and second variables, (5.11) takes the form

H(k0, ρ) = 1

4πρ

∫ +∞
−∞

∫∫∫
f
(
k0

1, ρ1
)

g
(
k0

2, ρ2
)

k0− k0
1 − k0

2

ln[ρ2− (ρ1+ ρ2)2]

× ρ1ρ2 dρ1 dρ2 dk0
1 dk0

2 (5.12)

The expression (5.12) for H(k0, ρ) can be rewritten in the form

H(k0, ρ) = 1

4πρ

∮
00

1

∮
00

2

∮
01

∮
02

F
(
k0

1, ρ1
)

G
(
k0

2, ρ2
)

k0− k0
1 − k0

2

ln[ρ2− (ρ1+ ρ2)2]

× ρ1ρ2 dρ1 dρ2 dk0
1 dk0

2 (5.13)

where F(k0
1, ρ1) and G(k0

2, ρ2) are respectively, the extensions off (k0
1, ρ1) and

g(k0
2, ρ2) and where we have taken:|I(k0)| > |I(k0

1)| + |I(k0
2)|, |I(ρ)| > |I(ρ1)| +

|I(ρ2)|. In addition00
1, 00

2, 01, and02 are respectively, paths (as we have described
in Section 3), in the variablesk0

1, k0
2, ρ1 andρ2, enclosing all the singularities of

the integrand in (5.13). The difference between

∫
2ρ

ρ2− (ρ1+ ρ2)2
dρ and ln[ρ2− (ρ1+ ρ2)2]

is an entire analytic function. With this substitution in (5.13), we obtain

H(k0, ρ) = 1

2πρ

∫
ρ dρ

∮
00

1

∮
00

2

∮
01

∮
02

F
(
k0

1, ρ1
)

G
(
k0

2, ρ2
)

k0− k0
1 − k0

2

1

ρ2− (ρ1+ ρ2)2

× ρ1ρ2 dρ1 dρ2 dk0
1 dk0

2 (5.14)

Now we can use the method of Bolliniet al. (1999) to define the convolution
for the case in which F(k0

1, ρ1) and G(k0
2, ρ2) are tempered ultradistributions.
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We define:

Hλ0λ(k
0, ρ) = 1

2πρ

∫
ρ dρ

∮
00

1

∮
00

2

∮
01

∮
02

k0λ0
1 ρλ+1

1 F
(
k0

1, ρ1
)
k0λ0

2 ρλ+1
2 G

(
k0

2, ρ2
)

k0− k0
1 − k0

2

× 1

ρ2− (ρ1+ ρ2)2
dρ1 dρ2 dk0

1 dk0
2 (5.15)

Integral (5.15) is an analytic function of (λ0, λ) bounded by a power of|k| and
defined in a domain given by the cartesian product of a vertical bandbb0 contained
in theλ0-plane and vertical bandbb contained in theλ-plane. We can again extend
this domain using the method given in Gel’fand and Shilov (1964) and perform
the Laurent expansion:

Hλ0λ(k
0, ρ) =

∑
mn

H(m,n)(k0, ρ)λm
0 λ

n (5.16)

We define the convolution product as the (λ0, λ)-independent term of (5.16).

H(k) = H(k0, ρ) = H(0,0)(k0, ρ) (5.17)

The proof that H(k) is an ultradistribution is similar to the one given in Bollini
et al. (1999) for the one-dimensional case.

To simplify the evaluation of (5.15) we define:

Lλ0λ(k
0, ρ) =

∮
00

1

∮
00

2

∮
01

∮
02

k0λ0
1 ρλ+1

1 F
(
k0

1, ρ1
)

k0λ0
2 ρλ+1

2 G
(
k0

2, ρ2
)

k0− k0
1 − k0

2

× 1

ρ2− (ρ1+ ρ2)2
dρ1 dρ2 dk0

1 dk0
2 (5.18)

so that

Hλ0λ(k
0, ρ) = 1

2πρ

∫
Lλ0λ(k

0, ρ)ρ dρ (5.19)

Now we go to show that the cut on the real axis of (5.17) hλ0λ(k
0, ρ) is a even

function ofk0 andρ. For this purpose we consider

Hλ0λ(k
0, ρ) = 1

4πρ

∮
00

1

∮
00

2

∮
01

∮
02

k0λ0
1 ρλ+1

1 F
(
k0

1, ρ1
)

k0λ0
2 ρλ+1

2 G
(
k0

2, ρ2
)

k0− k0
1 − k0

2

× ln[ρ2− (ρ1+ ρ2)2] dρ1 dρ2 dk0
1 dk0

2 (5.20)

(5.20) is explicitly odd inρ. For the variablek0, we take on account that
eiπλ0{Sgn[I(k0

1)]+Sgn[I(k0
2)]} = 1 and as a consequence (5.20) is odd ink0 too. We
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consider now the parity in variableρ.∮
00

∮
0

Hλ0λ(k
0,−ρ)φ(k0, ρ) dk0 dρ = −

∫ +∞
−∞

∫
hλ0λ(k

0,−ρ)φ(k0, ρ) dk0 dρ

= −
∮
00

∮
0

Hλ0λ(k
0, ρ)φ(k0, ρ) dk0 dρ = −

∫ +∞
−∞

∫
hλ0λ(k

0, ρ)φ(k0, ρ) dk0 dρ

(5.21)

Thus we have

hλ0λ(k
0,−ρ) = hλ0λ(k

0, ρ) (5.22)

The proof for the variablek0 is similar.

6. THE CONVOLUTION OF TWO MASSLESS
WHEELER’S PROPAGATORS

The massless Wheeler’s propagatorw0 is given by

w0(k) = i

k2
0 − ρ2

(6.1)

It can be extended to the complex plane as a tempered ultradistribution in the
variablesk0 andρ:

W0(k) = −i
SgnI(k0)

8k0

[
SgnI(ρ)− SgnI(k0)

ρ − k0
− SgnI(ρ)+ SgnI(k0)

ρ + k0

]
(6.2)

where Sgn(x) is the function sign of the variablex.
We can now evaluate the convolution of two massless Wheeler’s propagators.

Then according to (5.18) and (6.2) we can write:

Lλ0λ(k
0, ρ) = −

∮
00

1

∮
00

2

∮
01

∮
02

SgnI
(
k0

1

)
8k0

1

×
[

SgnI(ρ1)− SgnI
(
k0

1

)
ρ1− k0

1

− SgnI(ρ1)+ SgnI
(
k0

1

)
ρ1+ k0

1

]

× SgnI
(
k0

2

)
8k0

2

[
SgnI(ρ2)− SgnI

(
k0

2

)
ρ2− k0

2

− SgnI(ρ2)+ SgnI
(
k0

2

)
ρ2+ k0

2

]

× k0λ0
1 ρλ+1

1 k0λ0
2 ρλ+1

2(
k0− k0

1 − k0
2

)
[ρ2− (ρ1+ ρ2)2]

dρ1 dρ2 dk0
1 dk0

2 (6.3)
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Equation (6.3) can be written as

Lλ0λ(k
0, ρ) = −

∮
00

1

∮
00

2

∫ +∞
−∞

∫ {
SgnI

(
k0

1

)
8ρ1

[
1

k0
1 − ρ1

− 1

k0
1 + ρ1

]

× [(ρ1+ i 0)λ+1+ (ρ1− i 0)λ+1] + 1

8k0
1

[
1

k0
1 + ρ1

− 1

k0
1 − ρ1

]

× [(ρ1+ i 0)λ+1− (ρ1− i 0)λ+1]

}{
SgnI

(
k0

2

)
8ρ2

[
1

k0
2 − ρ2

− 1

k0
2 + ρ2

]

× [(ρ2+ i 0)λ+1+ (ρ2− i 0)λ+1] + 1

8k0
2

[
1

k0
2 + ρ2

− 1

k0
2 − ρ2

]

× [(ρ2+ i 0)λ+1− (ρ2− i 0)λ+1]

}
k0λ0

1 k0λ0
2 dρ1 dρ2 dk0

1 dk0
2(

k0− k0
1 − k0

2

)
[ρ2− (ρ1+ ρ2)2]

(6.4)

Integrating (6.4) in the variablek0
1, we obtain

Lλ(k
0, ρ) = −

∮
00

2

∫ +∞
−∞

∫ {
iπ

4ρ1
SgnI(k0)

[
1

k0
2 − (k0− ρ1)

− 1

k0
2 − (k0+ ρ1

]
× [(ρ1+ i 0)λ+1+ (ρ1− i 0)λ+1]

+ iπ

4ρ1

[
2

k0
2 − k0

− 1

k0
2 − (k0− ρ1)

− 1

k0
2 − (k0− ρ1)

]

× [(ρ1+ i 0)λ+1− (ρ1− i 0)λ+1]

}{
SgnI

(
k0

2

)
8ρ2

[
1

k0
2 − ρ2

− 1

k0
2 + ρ2

]

× [(ρ2+ i 0)λ+1+ (ρ2− i 0)λ+1] + 1

8k0
2

[
1

k0
2 + ρ2

− 1

k0
2 − ρ2

]

× [(ρ2+ i 0)λ+1− (ρ2− i 0)λ+1]

}
dρ1 dρ2 dk0

2

ρ2− (ρ1+ ρ2)2
(6.5)

where we have selectedλ0 = 0 due to the fact the integral is convergent for
λ0 = 0.
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There have a sole term in (6.5) whose integral is not null. It is

Lλ(k
0, ρ) = −

∮
00

2

∫ +∞
−∞

∫
iπ

4ρ1
SgnI(k0)

[
1

k0
2 − (k0− ρ1)

− 1

k0
2 − (k0+ ρ1)

]

× [(ρ1+ i 0)λ+1+ (ρ1− i 0)λ+1] + SgnI
(
k0

2

)
8ρ2

[
1

k0
2 − ρ2

− 1

k0
2 + ρ2

]

× [(ρ2+ i 0)λ+1+ (ρ2− i 0)λ+1]
dρ1 dρ2 dk0

2

ρ2− (ρ1+ ρ2)2
(6.6)

Evaluation of (6.6) gives

Lλ(k
0, ρ) = π2k0

2

∫ +∞
−∞

∫
[(ρ1+ i 0)λ+1+ (ρ1− i 0)λ+1]

× [(ρ2+ i 0)λ+1+ (ρ2− i 0)λ+1]

× dρ1 dρ2[(
k2

0 + ρ2
1 − ρ2

2

)2− 4k2
0ρ

2
1

]
[ρ2− (ρ1+ ρ2)2]

(6.7)

We can evaluate now the integral in the variableρ2 in (6.7). The result is

Lλ(k
0, ρ) = π3

16ρ

(1+ cosπλ)2

sin π (λ+1)
2

∫ ∞
0

dρ1 ρ
λ
1

×
e−

iπ
2 (λ+1)SgnI(k0)(k0+ ρ1)λ+1− e−

iπ
2 (λ+1)SgnI(ρ)(ρ + ρ1)λ+1

(ρ − k0)
(
ρ+k0

2 + ρ1

)
− e−

iπ
2 (λ+1)SgnI(k0)(k0+ ρ1)λ+1− e

iπ
2 (λ+1)SgnI(ρ)(ρ1− ρ)λ+1

(ρ + k0)
(
ρ−k0

2 − ρ1

)
− e

iπ
2 (λ+1)SgnI(k0)(ρ1− k0)λ+1− e−

iπ
2 (λ+1)SgnI(ρ)(ρ1+ ρ)λ+1

(ρ + k0)
(
ρ−k0

2 + ρ1

)
+ e

iπ
2 (λ+1)SgnI(k0)(ρ1− k0)λ+1− e

iπ
2 (λ+1)SgnI(ρ)(ρ1− ρ)λ+1

(ρ − k0)
(
ρ+k0

2 − ρ1

)


(6.8)
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The evaluation of (6.8) is a tedious task. Fortunately limλ→ 0 can be taken
without problem in the finals steps of the calculation. The result is

L(k0, ρ) = π3

4ρ

[
π

2
SgnI(k0) SgnI(k0+ ρ)+ π

2
SgnI(ρ) SgnI(k0+ ρ)

+ π
2

SgnI(k0) SgnI(ρ − k0)− SgnI(ρ − k0)

]
(6.9)

Equation (6.9) can be written:

L(k0, ρ) = π4

8ρ
[(SgnI(k0)+ SgnI(ρ)) SgnI(ρ + k0)+ (SgnI(k0)− SgnI(ρ))

×SgnI(ρ − k0)] = π4

4ρ
SgnI(k0) SgnI(ρ) (6.10)

Taking into account that

H(k0, ρ) = 1

2πρ

∫
L(k0, ρ)ρ dρ

we obtain

H(k0, ρ) = π3

8
SgnI(k0) SgnI(ρ) = [W0 ∗W0](k0, ρ) (6.11)

(The symbol∗ indicates the convolution product).
Thus the cut of H(k0, ρ) along the real axis, i.e., the distribution h(k0, ρ) is

h(k0, ρ) = π3

2
= [w0 ∗ w0](k0, ρ) (6.12)

7. THE CONVOLUTION OF TWO COMPLEX
MASS WHEELER’S PROPAGATORS

The complex mass Wheeler’s propagator is

wµ(x) = − iπ

2

µn/2−1

(2π )n/2
Q1/2(1−n/2)
− J1−n/2

(
µQ1/2
−
)

(7.1)

and it Fourier transform has the expression:

Wµ(k0, ρ) = − i Sgn[I(k0)]

8
√

k2
0 − µ2

Sgn[I(ρ)] − Sgn
[
I
(√

k2
0 − µ2

)]
ρ −

√
k2

0 − µ2

−
Sgn[I(ρ)] + Sgn

[
I
(√

k2
0 − µ2

)]
ρ +

√
k2

0 − µ2

 (7.2)
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Using (7.2), we have now

L(k0, ρ) = −
∮
00

1

∮
00

2

∮
01

∮
02

Sgn
[
I
(
k0

1

)]
8
√

k02
1 − µ2

1

Sgn[I(ρ1)] − Sgn
[
I
(√

k02
1 − µ2

1

)]
ρ1−

√
k02

1 − µ2
1

−
Sgn[I(ρ1)] + Sgn

[
I
(√

k02
1 − µ2

1

)]
ρ + 1+

√
k02

0 − µ2
1



× Sgn
[
I
(
k0

2

)]
8
√

k02
1 − µ2

2

Sgn[I(ρ2)] − Sgn
[
I
(√

k02
2 − µ2

2

)]
ρ2−

√
k02

2 − µ2
2

−
Sgn[I(ρ2)] + Sgn

[
I
(√

k02
2 − µ2

2

)]
ρ2+

√
k02

2 − µ2
2


× ρ1ρ2 dρ1 dρ2 dk0

1 dk0
2(

k0− k0
1 − k0

2

)
[ρ2− (ρ1+ ρ2)2]

(7.3)

where we have selectedλ0 = λ = 0 due to that (7.3) is convergent in this point
(observe the reader that it is due to the definition of L(k0, ρ)). Now (7.3) is equal
to

L(k0, ρ) = −1

4

∮
00

1

∮
00

2

∫ +∞
−∞

∫
Sgn

[
I
(
k0

1

)]
ρ2

1 + µ2
1− k02

1

Sgn
[
I
(
k0

2

)]
ρ2

2 + µ2
2− k02

2

× ρ1ρ2(
k0− k0

1 − k0
2

)
[ρ2− (ρ1+ ρ2)2]

dρ1 dρ2 dk0
1 dk0

2 (7.4)

and can be rewritten as

L(k0, ρ) = − 1

16

∮
00

1

∮
00

2

∫ +∞
−∞

∫
Sgn

[
I
(
k0

1

)]√
ρ2

1 + µ2
1

 1

k0
1 −

√
ρ2

1 + µ2
1

− 1

k0
1 +

√
ρ2

1 + µ2
1



× Sgn[I(k0
2)]√

ρ2
2 + µ2

2

 1

k0
2 −

√
ρ2

2 + µ2
2

− 1

k0
2 +

√
ρ2

2 + µ2
2

 1(
k0− k0

1 − k0
2

)
× ρ1ρ2

ρ2− (ρ1+ ρ2)2
dρ1 dρ2 dk0

1 dk0
2 (7.5)
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Taking into account that∮
00

1

∮
00

2

Sgn
[
I
(
k0

1

)]
Sgn

[
I
(
k0

2

)]
k0− k0

1 − k0
2

 1

k0
1 −

√
ρ2

1 + µ2
1

− 1

k0
1 +

√
ρ2

1 + µ2
1


×
 1

k0
2 −

√
ρ2

2 + µ2
2

− 1

k0
2 +

√
ρ2

2 + µ2
2

 dk0
1 dk0

2

= −
32π2k0

√
ρ2

1 + µ2
1

√
ρ2

2 + µ2
2[

k2
0 +

(
ρ2

2 + µ2
2

)− (ρ2
1 + µ2

2

)]2− 4k2
0

(
ρ2

2 + µ2
2

) (7.6)

Replacing this result in (7.5) we obtain

L(k0, ρ) = 2π2k0
∫ +∞
−∞

∫
1[

k2
0 +

(
ρ2

2 + µ2
2

)− (ρ2
1 + µ2

2

)]2− 4k2
0

(
ρ2

2 + µ2
2

)
× ρ1ρ2

ρ2− (ρ1+ ρ2)2
dρ1 dρ2 (7.7)

Taking into account that∫
ρ dρ

ρ2− (ρ1+ ρ2)2
= 2[I(ρ)] ln(ρ1+ ρ2− ρ)+2[−I(ρ)] ln(ρ − ρ1− ρ2)

(7.8)
and using the result (7.7) we obtain

H(k0, ρ) = πk0

ρ

∫ +∞
−∞

∫
1[

k2
0 +

(
ρ2

2 + µ2
2

)− (ρ2
1 + µ2

2

)]2− 4k2
0

(
ρ2

2 + µ2
2

)
×2[I(ρ)] ln(ρ1+ ρ2− ρ)+2[−I(ρ)] ln(ρ − ρ1− ρ2) dρ1 dρ2

(7.9)

Equation (7.9) can be written in the realρ-axis as

H(k0, ρ) = iπ2k0

ρ

∫ +∞
−∞

∫
Sgn(ρ1+ ρ2− ρ)ρ1ρ2 dρ1 dρ2[

k2
0 +

(
ρ2

2 + µ2
2

)− (ρ2
1 + µ2

2

)]2− 4k2
0

(
ρ2

2 + µ2
2

)
(7.10)

After the evaluation of double integral of (7.10) we obtain

H(k0, ρ) = π3Sgn[I(k0)]

4
(
k2

0 − ρ2
) √(k2

0 − ρ2+ µ2
2− µ2

1

)2− 4
(
k2

0 − ρ2
)
µ2

2

= [Wµ1 ∗Wµ2](k
0, ρ) (7.11)
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8. DISCUSSION

In an earlier paper (Bolliniet al., 1999), we have shown the existence of the
convolution of two one-dimensional tempered ultradistributions. In this paper we
have extended these procedure ton-dimensional space. In four-dimensional space
we have obtained a expression for the convolution of two tempered ultradistribu-
tions even in the variablesk0 andρ.

When we use the perturbative development in Quantum Field Theory, we have
to deal with products of distributions in configuration space, or else, with convolu-
tions in the Fourier transformedp-space. Unfortunately, products or convolutions
(of distributions) are in general ill-defined quantities. However, in physical ap-
plications one introduces some “regularization” scheme, which allows us to give
sense to divergent integrals. Among these procedures we would like to mention
the dimensional regularization method (Bollini and Giambiagi, 1972a,b, 1996).
Essentially, the method consists in the separation of the volume element (dvp) into
an angular factor (dÄ) and a radial factor (pv−1 dp). First, the angular integration
is carried out and then the number of dimensions v is taken as a free parameter.
It can be adjusted to give a convergent integral, which is an analytic function
of v.

Our formula (4.1) is similar to the expression one obtains with dimensional
regularization. However, the parametersλ are completely independent of any di-
mensional interpretation.

All ultradistributions provide integrands (in (4.1)) that are analytic functions
along the integration paths. The parametersλ permit us to control the possible
tempered asymptotic behavior (cf. Eq. (3.9)). The existence of a region of ana-
lyticity for eachλ, and a subsequent continuation to the point of interest (Bollini
et al., 1999), defines the convolution product.

For tempered ultradistributions (even in the variablesk0 andρ), we have
obtained formula (5.15) for which are valid similar considerations to those given
for (4.1). The properties described below show that tempered ultra-distributions
provide an appropriate framework for applications to physics. Furthermore, they
can “absorb” arbitrary pseudopolynomials, thanks to Eq. (3.10). A property that
is interesting for renormalization theory. For this reason we decided to begin this
paper and also for the benefit of the reader we began this paper with a summary
of the main characteristics ofn-dimensional tempered ultradistributions and their
Fourier transformed distributions of the exponential type.

ACKNOWLEDGMENTS

This work was partially supported by Consejo Nacional de Investigaciones
Cientı́ficas and Comisi´on de Investigaciones Cient´ıficas de la Pcia, de Buenos
Aires, Argentina.



P1: GAD

International Journal of Theoretical Physics [ijtp] pp1166-ijtp-484384 April 28, 2004 4:22 Style file version May 30th, 2002

76 Bollini and Rocca

REFERENCES

Bollini, C. G., Escobar, T., and Rocca, M. C. (1999).International Journal of Theoretical Physics38,
2315.

Bollini, C. G. and Giambiagi, J. J. (1972a).Physics Letters B40, 566.
Bollini, C. G. and Giambiagi, J. J. (1972b).Nuovo Cimento B12, 20.
Bollini, C. G. and Giambiagi, J. J. (1996).Physics Review D53, 5761.
Gel’fand, I. M. and Shilov, G. E. (1964).Generalized Functions, Vol. 1, Academic Press, New York,

Chap. 1, Sect. 3.
Gel’fand, I. M. and Shilov, G. E. (1968).Generalized Functions, Vol. 2, Academic Press, New York.
Gel’fand, I. M. and Vilenkin, N. Ya. (1964).Gneralized Functions, Vol. 4, Academic Press, New York.
Hasumi, M. (1961).Tôhoku Math. J.13, 94.
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